
S NAVAL POSTGRADUATE SCHOOL
to Monterey, California

S1

0z irOTT, FILE COP,

N7 4.

7

THESIS

ARCHITECTURE AND ALLOCATION CONSIDERATIONS FOR 0

GROUP EXPERT SYSTEMS

by

Michael Bernard Rattigan

March 1988

Thesis Advisor: Taracad Sivisankaran

Approved for public release; distribution is unlimited

DTIC
L ELECTA ft

bAus I I"U

AS

V". IN., a

UNCLASSIFIED/
iECuaRy CLASSIFICATION 0; T.S PACE 01 -

REPORT DOCUMENTATION PAGE
la UIPO8 T SE C?11Y LASSI PICATION Ib RESTRICTIVE MARKINGS

ncJ assi ied
2a SEC .RITY CLASSIFICATION AUTHORITY I DISTRiBUTIONI/AVdAILABILiTY OF REPORT

Approved for public release;
2b OEC,ASS,CATONOO*NCRADING SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NJAABER(S) S MONITORING ORGANIZATION REPORT NUVOERtS)

6a NAME OF PERFORMING ORGANIZATION 6o 0" CE S MBOL 'a NAVE OF MONTORNG OAGANIZAT ON1(it appicable)

Naval Postgraduate School jCode 54 Naval Postgraduate School b
6< ADDRESS C4rV State and lililCodep)

7 b ADDRESS (City. State and ZIP Cod#)

Monterey, California 93943-5000 Monterey, California 93943-5000

9a NAME OF fLNDING, SPONSORtNG St) O~FICE SYMBOL 9 PROCUREMENT INSTRuMIENT IDEN.PVCArION NkM9ER
CRGANIZAT-ON J (if applicadble)

dc ADDRIESSK(Cr State. dmd Z1P Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK AVORK Ntr
ELEMENT NO NO No ACCESS.OP4 No

L0

AR~f''~"ANDALCTO CONSIDERATIONS FOR GROUP EXPERT SYSTEMS

katt igan, Michael Bernard

3.j '.> C; REPORT *3o "'ME CO'dRQED D4 ATE Of REPORT (yeaf M~onth Oiy) IS PAGE
Master's Thesis RO 114 198 ac

'1 SiP;-1,%1EARy NOTATON "The views contained herein are those of the student and not those
of the Naval Postgraduate School or the United States Government."

*COSArT CODES - IS SUBjFCT 'ERMAS (COntinue on revonoi if nectuary and 'denffy by block n..ember1
ED GROUP SuB GROuP Distributed or Group Expert Systems; Allocation;

I Architecture

48Sta R.AL-CCnPn On reve'we 10 necoua'k and 610Mfify by block number)
..Thls theoscins investigates t he design, communication, and allocation considerations for

implementing a distributed group expert system on a Local Area Network. A model system v
called GESP (Group Expert System Prototype) was implemented in Prolog on a microcomputer
LAN to be used as a working platform. From observations of the model, conclusions have
been drawn concerning: (1) the architecture of the expert system software required to
support an interactive group expert system; (2) implications of expert system to expert
system communication; and (3) the optimum allocation strategy of expert systems to nodes
Due to the lack of a distributed operating environment in which to implement the model,
efficiency has been sacrificed for operability. Although GESP is not a fully practical
implementation of a group expert system, it should as a minimum provide a functional
framework for understanding, analyzing, and designing interactive group expert systems.

D 5 -Q 3-.' Cy A.AJLA~iLITY OF ABSTRACT 21 ABSTRACT SECURITY CL.ASSIFICATION

DO FORMI 1d 84 MAR B] APR od,t1O' -ay be used umItv~auitod SECuRitY CLASSI$,CAT'ON D;$ '-,S PACE 0
All CtMCf ed~t~f9 art Obfo01010 UNCLASSIFIED I

% .

Approved for public release; distribution is unlimited.

Architecture and Allocation Considerations for
Group Expert Systems

by

Michael Bernard Rattigan
Lieutenant, United States Naval Reserve

B.S., University of North Carolina at Greensboro, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March, 1988

Author: / " '4
R hael ' nard' Ra tan

Approved by:: __ _
Taracad Sivasankaran, Thesis Advisor

Tung Bui, Second Reader

David R. Wfipple, ,Department

of Aqrt-iv ciences

4ame M. emge, AingDean of
nfor;4onand~oli y Sciences

AA P6/

ABSTRACT

This thesis investigates the design, communication, and

allocation considerations for implementing a distributed

group expert system on a Local Area Network. A model system

called GESP (Group Expert System Prototype) was implemented

in Prolog on a microcomputer LAN to be used as a working

platform. From observations of the model, conclusions have

been drawn concerning: (1) the architecture of the expert

system software required to support an interactive group

expert system; (2) implications of expert system to expert

system communication; and (3) the optimum allocation strategy

of expert systems to nodes. Due to the lack of a distributed

operating environment in which to implement the model,

efficiency has been sacrificed for operability. Although GESP

is not a fully practical implementation of a group expert

system, it should as a minimum provide a functional framework

for understanding, analyzing, and designing interactive group

expert systems.

ASo sUIofi For

Distribution/

AvallabilitY Codes

Ava ad/or
Dist SpecilN,EI), ,

iii

I

THESIS DISCLAIMER

The reader is cautioned that computer programs developed

in this research may not have been exercised for all cases of

interest. While every effort has been made, within the time

available, to ensure that the programs are free of

computational and logic errors, they cannot be considered

validated. Any application of these programs without

additional verification is at the risk of the user.

,I.

iv€

r..

I

I

'..

a',

I,

TABLE OF CONTENTS

I. INTRODUCTION-- 1

II. GROUP EXPERT SYSTEMS------------------------------------5

III. ARCHITECTURE FOR GROUP EXPERT SYSTEMS---------------- 10

IV. COMMUNICATION AND ALLOCATION CONSIDERATIONS--------- 32

V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 45

APPENDIX SOURCE CODE FOR GESP------------------------------- 48

LIST OF REFERENCES-- 72

BIBLIOGRAPHY--- 73

INITIAL DISTRIBUTION LIST------------------------------------ 75

I. INTRODUCTION

A. BACKGROUND

Group expert systems offer tremendous potential support

to strategic decision making. Top level managerial decisions

are often made by a group or by a single person after

consultation with a group. Distributed expert systems can

facilitate group decisions whether the organizational

structure is centralized or decentralized.

The issue of centralization verses decentralization

acquires a new dimension for debate when viewed in the

context of distributed expert systems. Organizational

structure and behavior clearly surface as the central factors

in the question of decentralization. The physical location of

control of decision making authority and responsibility

replaces the traditional arguments of economics verses

enduser productivity as the platform debate.

The concept of distributing expert systems implies that

some knowledge and responsibility for decision making is

distributed. On the smallest scale, all experts within the

group may be located in the same building. A Group Expert

System (GES) implemented on a local area network could, at

the very least, conserve the amount of time spent in meetings

solving reoccurring problems. In a decentralized organization

implemented on a large scale, such as a wide area network, a

GES could realize significant savings in timeliness and

effectiveness of organizational decisions.

Distributed expert systems have many of the same design

and implementation problems as other types of distributed

systems. Attempts to optimize performance within constraints

are key considerations. Typical problems include: the

physical location of resources, replication of data,

interprocess and intermodule communications, and the

determination of the optimal number and location of nodes.

1

at

B. OBJECTIVES

This study will looks at the issues related to analyzing,

designing, and implementing a distributed group expert

system. Some of the major issues addressed are how domain

concepts, rules / heuristics, and control strategies are

distributed based on system and communication costs.

C. RESEARCH QUESTIONS

The primary research question is one of basic

implementation. Is the implementation of a distributed expert

system possible on a Local Area Network?

If LAN implementation is possible, what should be the

general architecture?

What are the implications of node to node communication

and of interprocess and intermodule communication? Also, what

are the implications of expert system to expert system

communication including calling processes, rule passing, data

passing, and interactive expert systems?

The final question deals with the actual distribution of

systems. What is the optimum allocation strategy of expert

systems to nodes?

D. SCOPE

A networked prototype distributed expert system has been

implemented on six nodes of a Local Area Network. The

prototype system is called GESP, Group Expert System

Prototype. GESP solves a meta problem which is a security

clearance screening for employees. It employs multiple expert

systems and multiple knowledge domains. Implementation of

GESP was constrained by the operating system of the IBM PC

LAN, which does not directly support distributed computing.

This limitation was overcome by using a commonly available

drive for a blackboard as a means of communication. Although

GESP was implemented only on a Local Area Network, design

2

considerations, architecture, allocation, and communications

are discussed in broader context.

E. METHODOLOGY

An architecture has been proposed by which expert systems

can communicate on a microcomputer Local Area Network using

a commonly available drive as a blackboard. A prototype

system, GESP (Group Expert System Prototype), has been

developed using Prolog. It is capable of supporting three

knowledge bases. The model has been implemented on a PC LAN

for six nodes. Implications for system allocation and

architecture for group expert systems have been induced from

the model. Optimization formulas from operations research

have been used to conduct studies of cost and allocation

problems. Formulas for determining system cost and allocation

for expert systems have been derived.

F. SUNNARY OF FINDINGS

This study has shown, by actual implementation of a model

system, that implementation of distributed expert systems on

a Local Area Network is possible. The implementation requires

an architecture consisting of a communication structure, a

meta expert system to decompose the problem, consult

appropriate expert systems, and synthesize a solution, and

individual expert systems to form solutions within their

respective domains. It has also been shown that group expert

system allocation can be optimized by minimizing system cost.

A method of determining expert system cost has been

demonstrated.

G. ORGANIZATION OF STUDY

The remaining chapters will describe the thesis research.

Specifically, Chapter II presents an introduction to group

expert systems. It provides an overview of expert system

support for group decision making and supports the use of

3

artificial intelligence in group decision support. Chapter

III describes the architecture used in the model group expert

system and proposes a structure for group expert systems in

general. Chapter IV presents communication and allocation p

considerations for group expert systems. It details a method ,

for measuring system cost and thereby allocating expert

systems to nodes on a network. Chapter V draws conclusions

from this study and proposes directions for future research.

%

I

.

.'.

-3-3
4.
S

.

3 %

_.4.5.

S

II. GROUP EXPERT SYSTEMS

Group expert systems, GES, represent the next generation

of intelligent systems which will provide support to

management. Current expert systems operate on a stand alone

basis. Each expert system has problem solving expertise in

only a specific domain. However, strategic decision making in

management often requires the coordinated assessment and

evaluation of multiple areas of managerial expertise. The

development of group expert systems can greatly enhance the

quality and timeliness of strategic decision making.

Group expert systems function in a similar manner as do

group decision support systems, GDSS. There has been some

debate about whether or not an effective decision support

system is in fact an expert system. The use of expert systems

as decision support systems is the motivatioa to develop

group expert systems. Expert systems represent "tremendous

potential in providing the ultimate assistance to decision

makers involved in serious business activities". (Isett,

1985, p.21)

Waterman (1986, pp.10-12) suggests that there are five

advantages to substituting artificial expertise for human

expertise. First of all, artificial intelligence is

permanent. Huaan experts must constantly exercise their

skills in order to maintain proficiency. System code does not

decay through lack of use. Expert systems are not affected by

personnel turnover. If a manager leaves the firm, that

expertise also perishes. Once an expert system is coded,

expertise becomes corporate knowledge.

Secondly, artificial expertise is easily portable.

Transferring expert knowledge from one human being to another

is difficult, costly, and time intensive. Porting artificial

intelligence from one location to another is as simple and

cheap as copying a program. Further more, less experienced

managers gain knowledge through the use of expert systems.

Documentation of knowledge is another advantage. It is

much simpler to document system code than to thoroughly

explain an expert's thoug.t process.

Artificial expertise is more consistent and reliable.

Artificial intelligence does not perform differently in a

crisis situation because of stress, time pressures, or

emotional factors.

Finally, artificial expertise is cheaper than managerial

expertise. Portability is a major factor contributing to its

low cost. It is far more expensive to hire additional

managers to satisfy need for expertise at multiple locations.

In addition to the advantages described above, Waterman

also lists five drawbacks to using artificial expertise.

These disadvantages apply to stand alone expert systems. Some

of these will be eliminated by employing GES.

Creativity and adaptability go hand-in-hand. There is

still much progress to be made in developing systems that can

learn and adapt to new situations. Group expert systems go a

long way in adding the dimension of separate multiple problem

domains. However, while a system may consult another for

input into solving its own problem, it still may not adapt

another system's algorithm or heuristic to its own internal

solution.

The whole world concept encompasses two more

disadvantages, the sensory experience and common sense. The

human can look at the whole picture at once and, drawing from

a wide range of experiences, see how each piece fits. Group

expert systems support human interaction only to the point

necessary to solve the problem. If a more extensive human

interface is designed for less structured problems, human

creativity, adaptability, and common sense can be maximized.

The final drawback to artificial expertise is a narrow

problem focus. Waterman not only lists narrow focus as a

disadvantage but as a criteria for building expert systems.

(Waterman, 1986, p. 26) He states, "An expert system has

6

depth; that is, it operates effectively in a narrow domain

containing difficult and challenging problems". This is true

for stand alone expert systems. Group expert systems combine

multiple domains of expertise to solve a meta problem. In

doing so, GES can support broad scope strategic management

problems.

A group expert system in its simplest form is composed of

a meta expert system, MES, and multiple single-domain expert

systems. The meta ES is concerned with problem-domain

relationships and domain-domain relationships. The MES

identifies the problem to be solved and decomposes it into

individual problem domains. It identifies the expert systems

whose domains are pertinent to the solution.

The problem solving is then devolved the remote ES. The

remote ES reads the problem devolved, develops a solution,

and returns the solution to the MES. The MES then synthesizes

the solution. Group Expert System Prototype is an example of

how a GES solves a meta problem. The problem in this thesis

is whether or not to grant a security clearance to a

particular employee. There are three problem-domain

relationships associated with this question. To conduct a

security screen, each employee must successfully complete a

financial profile study, criminal profile study, and a

psychological study.

There are six expert systems in the GES, including the

MES. Three are in the credit domain, CREDIT 1, CREDIT 2, and

CREDIT_3. CREDIT_1 and CREDIT_2 have a peer-to-peer

relationship within the domain, and CREDIT .3 is independent.

CRIME_1 is the criminal domain and PSYCH 1 in the

psychological domain. All domain-domain relationships are

indepenident. Any dependency that exists should be captured in

the rule base.

The MES, META, calls other expert systems to conduct all

or part of the screening process. The criminal expert system

looks into the criminal database and generates a criminal

record score. Likewise, the other expert systems look into

their respective databases to calculate scores. All systems

could use a centra3 employee database if it contained

adequate information. CREDIT_1 also has the ability to

consult CREDIT_2 to conduct a more extensive check. The

remote expert systems pass their scores to META which accepts

them as inputs to the meta problem.

The assumption is that the problem is partitionable. In a

group management decision scenario partitioning is intrinsic

to the nature of the problem. If it were not, only one

decision maker would be required. Strategic management

decisions involve not only multiple experts, but often these

managers are at remote locations. Group expert systems

provide a cost effective platform by which scarce expert

resources may be accessed.

The traditional comparison of expert systems to decision

support systems sees two major differences, how the systems

are used and the types of problems they solve. The use of

expert systems as decision support tools is generally

accepted, however the difference is that expert systems

typically replace the expert. With group expert systems it is

not necessary to eliminate an expert user. The goal is to

minimize the involvement of expert management, whose time is

a scarce resource.

The greatest advantage of GES over stand alone ES is the

type of problems they can solve. Current ES are designed to

solve structured, well-defined, and somewhat repetitive

problems with a narrow and predictable domain. Data is

usually symbolic, factual, and procedural in content. These

ES are unlike DSS which solve unstructured and ill-defined

problems of a broad, complex, and unpredictable nature. DSS

support ad-hoc inquiries handling data which is numerical and

factual in content. Modification to a DSS is more difficult

than to an ES, as a DSS is more rigid.

8

*.i~ V' V *~V9 ~ %~ .a~% ~ ~ ,~% %%u W% P~ 5 .% %%

Group expert systems provide managers with the best of

both DSS and ES. Distributed expert systems can interface

with users at all nodes on the network as do GDSS. The most

significant factor of GES is their ability to solve broad-

scope problems involving multiple knowledge domains. Group

decision support systems require interaction with a human

expert. Group expert systems support such human interaction

when necessary but do not require it. Coding human expertise

frees the manager to perform other functions whenever direct

human involvement is not required.

9

U

~N~r'%*' * ~ % *%q

III. ARCHITECTURE FOR GROUP EXPERT SYSTEMS

In the arena of group expert systems, there is the

fundamental task of bringing the system to the user. End-user
computing puts AI decision support systems within the user's

reach both physically and economically, in terms of both

system and budget constraints. However, there has been much
debate about the feasibility of implementing AI systems on a

PC.

The knowledge domain of a meta problem may be too large

to fit into a PC, in fact it may be too broad for a single

expert system. Factoring the meta domain into discrete sub-

domains and distributing the sub-domain expert systems

across a network allows multiple PC's to share the problem.

The general architecture required to support this concept
consists of a communication mechanism, a meta expert system,

and consultant expert systems. Ideally, the communication is

problem independent, however, it may be imbedded within the

domain expert systems.

The meta expert system manages the solution of the

problem. It is responsible for problem acceptance and
validation and problem-domain and domain-domain
relationships. It decomposes the problem and devolves the

problem to consultant expert systems. The meta expert system

accepts the results from the consultants and synthesizes a

solution. The general architecture is shown in Figure 3.1.

Group expert systems, GES, present an ideal platform for

demonstrating how to implement distributed expert systems on
PC's. The key to distributing expert systems is structured

modular design. There are three levels of modularity
applicable to GES. The first level is communication. In order

to distribute expert systems, they must be able to talk to
one another. That is, one system must call another; pass

data, rules, solutions, and make calls to the operating

system and the database. At some level, at least one expert

10

'INC %'~

(Problem

MES

Problem Identification

Problem Validation
Problem-Domain Relationships

Domain-Domain Relationships -

Decompose Problem

Devolve Problem to Remote ES

Synthesize Solution

ES(1,1) ES(1,m) ES(n,m)

Read Problem

Develop Solution 0 0 0

Send Solution

Figure 3.1 META MODELING FOR A GES

11 9

9

system must interface with the user. The control

communication structure is located at the node where the

problem originates. The control takes the problem input from

the user, validates it, and decides which expert systems must

be called to solve the problem. It accepts the inputs and

solutions from the other expert systems and uses them to

solve the higher level problem. The communication structures

at the lower level expert systems allow them to communicate

with the calling system and with each other, as in consulting

a peer system. If the problem requires Input from a user at
remote node, as in a GDSS, a user interface at lower level

can also be supported. To the greatest extent possible the
communication architecture should be independent of the

problem to be solved. The objective is to be able to solve a

range of problems with multiple expert systems within one

GES. The advantages of distinct separation of the problem
from communication will be realized in a multitasking

environment. The communication module could call any expert

system by issuing an executable command and then reading the

expert system output. Such a system should be extendable. It

should be able to support solutions to other common expert

system problems which are independent of the domain of

expertise. (Biegl, 1986, p. 279)

The second level of modularity is the problem itself. The

problem is factored by partitioning the knowledge domain.

Each expert system represents a distinct part of the

knowledge domain of a larger problem, as discussed in the

previous chapter. Expert systems may interact vertically or

horizontally to solve the problem. They may share a common

database, pass rules or information from their own unique

database to other systems, or pass their own solution to

another system to be used to solve a separate problem. The

top-level system can collect solutions from all other experts

to solve a meta problem. The architecture proposed herein is

one that supports the solution of this meta problem on a PC

12

111] I..

LAN. Vertical and peer-to-peer system communication are

required.

The third level of modularity is within a single expert

system. The architecture for distributing a single expert

system is best implemented in a distributed operating system

environment. The problem to be solved by the system must be

one which can be partitioned into distinct goals. Unique rule

sets which are paths to goals may be partitioned into modules

separate from unrelated rules and distributed to another

processor. The initial state rules can be fired from a module

located on a remote processor. The resultant of the goal

state is then passed back to the remote calling module. This

type of intermodule communication across remote processors is

not practical to implement on the PC LAN, as the LAN was not

designed to support distributed processing. The communica-

tions structure required to support an entire expert system

would be necessary for each set of modules located on a

remote processor. The overhead could only be justified for

distributing a single large expert system. Distributing

multiple expert systems is far more interesting, and the

problem of the single system is solved in much the same way.

GESP, Group Expert System Prototype, is the initial

screening of an individual for a security clearance. To pass

the screening the candidate must have a satisfactory

criminal, psychological, and credit records check. One

criminal record database, three credit agencies, and one

psychological record database are on the system. The control

expert system, META, interfaces with the user. The problem to

be solved, that is the type of screening to be conducted, is

input by the user, and META calls the appropriate expert

systems. There is a single fixed cost associated with

consulting the criminal expert system, CRIME_1, and likewise,

the psychological expert system, PSYCH_1. However, each

credit expert system has a different cost associated with.

The top-level system, META, may select either CREDIT_1 or

13

CREDIT_3. CREDIT_3 is the cheaper system, but it is less

extensive than CREDIT 1 and only used for lower level

clearances. CREDIT_1 is more expensive and is used for more

sensitive clearances. It has the ability to consult CREDIT_2

on a peer-to-peer basis in order to obtain a higher quality

solution.

The first and most obvious obstacle to implementing GESP

is the fact that the IBM PC LAN operating system does not

directly support distributed processing. It is not possible

to directly call an expert system located on a remote

processor or to directly pass it data. To establish system-

to-system communication a virtual disk was created. The

virtual disk is used as a blackboard to which all expert

systems can read and write. In this respect GESP can not

adhere to modular independence between the communication

structure and the specific problem. A diagram of GESP is

presented in Figure 3.2.

META calls other expert systems by writing the file,

k file.inp. This file contains the names of the expert

systems to be called and all data necessary to begin

execution. The other expert systems use a polling process to

look for this file. When kfile.inp appears, each system

checks the time stamp to see if the file is current. If the

file is current it is opened and read. Each expert system

then checks the list for membership to see if it is being

called. The check is accomplished by using the member

predicate. If the membership rule succeeds, the expert system

begins execution of the problem. Each system returns a

solution by writing the files crimel.rep, credit_l.rep, and

psych_l.rep respectively. CREDITI calls CREDIT_2 in the same

manner using the file, credit l.inp. CREDIT 2 responds with

the file, credit_2.rep.

All systems must constantly poll, checking the time

stamp, to see if they are being called. If the META system

knows on which processor each expert system is located the

14 'p

I

U.)
CL)

-J

CC 0

coo

U) C:

o M E

a)
Q.

0i +-

0
0

cc\J
C~i

a)

li

Cc

15

process can be made much more efficient. META could make a

call to the operating system telling it to send an interrupt

signal to the desired processors. When the called processor

receives the interrupt, it "wakes up" the polling process.

META, Figure 3.3, has a list of all problems that can be

solved on the system in its database. Any problem input by a

user is checked for validity. An incorrect problem

submission will generate an error message to the user, and

the system will cease execution and return to the initial

state. Input of a valid problem begins execution, and META

will determine which expert systems are to be consulted from

the database. Each problem is associated with a list of

expert systems required to solve it. The calling file,

k_file.inp, is created, and the list of expert systems to be

called is included. K file.inp is then written to the virtual

drive.

Immediately after the calling file is written, META goes

into the polling process. It looks for a report file from

each of the expert systems in the order in which they were

called. Polling continues until a report file, for example

crime_l.rep, appears. By use of the "directory" predicate

META checks the time stamp on crimel.rep and compares it to

the time in its database. The base time is initialized to

zero for the first run. If the times do not match, the file

is determined to be current and is opened. The information

provided by the remote expert system is read and asserted to

the database. The polling process is again initiated, and the

procedure is repeated until all expert systems have reported.

The time stamp of the latest read of the report file is

recorded.

META proceeds to evaluate the reports to determine if the

candidate will satisfy the security screening requirements.

Each expert system returns a score which is the measure of

the candidates performance in each area. Point levels are

awarded for discrepancies. For each area of evaluation there

16

'PV V
-

-O

0m

ILU

CC

LL

17

C.V)

0/
CL/

Q/

CY)
OL CY/

CL/

- -

CLS

OLS

18S

W

4-1-

E ca

C)-

c 4

E (

19D

- ~ ' 'S ~ ~ -w -. - 4 .p~4~.~Cd:

-,

55

I-
0
Cl)

2
C,
Cu

4-

0)

4-
C
0
C.)

cv)
cv,
0)

0)

p
'55.

p

I'.

.5,.

20

V~~%V 1
w ~V% VV% %%%. %BS.%,~V S.-55,,w,-,..,- * S " ~ a. -~a P

700

-Y9

CD co

4-.

21

_ 0

CC.)
4C"

00

LL

cow

22.

is a threshold level above which the candidate fails. The

scores are then totaled. There is likewise a failing

threshold for total score, accounting for the synergistic

effect. It is possible that one might pass each area by a

narrow margin but fail for having done significantly poorly

in more than one area. META then displays the results to the

user.

CRIME_1, PSYCH_1, and CREDIT_3, Figures 3.4, 3.5, and 3.6

respectively, are very similar in structure. They are called

by and report directly to META. CRIME_1 will be used as an

example. It uses the "directory" predicate to poll the

virtual drive as does META. It also uses the same time stamp

checking procedure and the same membership check. Upon u

determining the validity of the call, it executes a criminal 9

record check. Upon determining a score, it creates the file

crime l.rep including the score and writes the file to the

blackboard.

CREDIT_1, Figure 3.7, is called by and reports to META

by the same process as do CRIME_1 and PSYCH_1. 7he unique

feature of CREDIT 1 is peer-to-peer communication. It is this

added feature which is the primary contributor to its higher

consultation cost. The decision to consult may be delegated

to a lower level or may exist at that lower level as an

intrinsic part of the problem. In this case, the more

extensive credit expert system decides whether or not to

initiate further investigation based on its own first-cut

findings. The decision to consult CREDIT_2, Figure 3.8, is

based on a threshold score. If the candidate fails the

initial check, a more detailed investigation can be prompted

to see if a failing score is warranted.

The structure of the code used to call CREDIT_2 and to

make and receive its report is the same as that of the higher

level expert systems. Only the names of the calling and

reporting files are changed. The call to an expert system at

233

0 LL

LLI

0 2
LL-J

0 LLI

LL *U

z U-.

v LLS

24 U

* L w

0-7-

LLLL

L'S

coa

0 7p

cn I.

.d ~dSd V% W\d~v/ d a a- -- SI oa

Iz L

iti

LLU

00

<L

z2

-~ .. w4'- -u

U. I ~ a I / I. -. '-

LU

W (n,
LLLU

C))

LLU

U)4I

LLL

05

LUU

CL 0

wp

LLJ 27

* *~' ~ ~ - -'5

T4 'K -wwww

4-4W

CLC

cov

CDh

28

~~A/ A~ -**.iv 1 ~*1 ~1 1C~ ~A*A.CPAA~** CC%.&A ' .AC C 6 4

a:,

05LI
LJO

<U) w
0

a- 9

-i U)

z LL

E A

ui 3: 1

tR ujp

C~l z ! 29

< 4.

3: cr (

ui UJS<

~~~~ 'ui 
m 

-,~* -*S'q ~ 'W % . *g'-.S;'4* ~ ~ ~ ~ %



- 1VV VIE - - - ".

the peer level can be made in the same way as a vertical

call.

The key, again, is modularization. The communication

structure is generalized within the problem, such that it

supports vertical and horizontal interfaces. The problem with

implementation on non-distributed and non-multitasking

microcomputer network is the necessity of writing to the

blackboard. A problem-specific file, such as crime l.rep,

does not allow complete separation of problem and

communication.

A better example of modularity is the consulting module

in CREDIT_2, "calcsoln". For the purposes of the prototype,

a resultant score is asserted rather than conducting a

consultation of an actual database:

calc soln:- asserta(score(160)).

This module is called from the main program module and is

completely independent from all other code. By only asserting

a score, simplicity of the model is maintained, and most

importantly, the generic nature of this module is

demonstrated. The string "calcsoln:-" can be followed by a

call to any credit database. In fact, the predicate can be

followed by any argument, however unrelated, as this module

is not coupled to any other. Creating an open environment

will maximize the ease with which even third party expert

systems can be incorporated into the GES. (Silverman, 1986,

p. 28)

The credit check may even be conducted by a separate

expert system which is called by calcsoln. By doing so the

solution of a single problem is further separated from the

group communication structure.

GESP presents a basic architecture for supporting group

expert systems. Although it was not possible to obtain the

lowest degree of coupling and highest degree of problem

independence within the constraints of the PC LAN, the

advantages that can be derived from modular design have been

30



demonstrated. Through the use of structured modular design

and functional independence at all three levels of

modularity, it is possible to implement group expert systems

on a PC network regardless of the nature of the expert

systems.

31 I



IV. COMMUNICATION AND ALLOCATION CONSIDERATIONS

Once the decision has been made to employ a group expert

system the question of where to locate it arises. Certainly

there are external environmental factors affecting system

location, such as organizational structure and politics.

However, the focus here will be strictly on system issues for

which there is an algorithmic solution. The question of

optimum allocation strategy applies whether implementing a

group expert system on an existing hardware suit or designing

an entirely new system including hardware. The question to be

answered here is, "What is the optimum allocation strategy on

a network for a group expert system involving multiple expert

systems"?

There is no good allocation strategy presently in use.

Saj-nicole Joni, director of consulting services at Gold Hill

Computers, Inc. in Cambridge, Massachusetts, has stated that

there is no threshold number of rules or processing speed

that can be used to determine where the expert system should

reside (Williamson, 1987, p. 56) . If Joni's statement is

true, how then are systems to be allocated?

The key to answering the question of allocation is to

think in terms of maximizing benefits and minimizing costs.

Networked expert systems benefit from the modularity of

distributed processing as do other distributed systems.

Modular design and distribution achieve the greatest

advantages over stand-alone systems. These benefits, as

discussed in detail in previous chapters, include an in-

creased problem scope and knowledge base, multiple knowledge

domains, and the ability to physically distribute expertise.

The disadvantage of distributing expert systems is the

same as that for any other type of system, and that is

overhead cost. Overhead cost is incurred when an expert

system executing on a processor makes a call to the operating

32



system, the database, or communicates with another expert

system residing on a different processor.

Expert system overhead cost is analogous to interprocess

communication, as discussed by Wesley W. Chu, et al, in tliat

system performance can be maximized by minimizing system

cost. Interprocessor communication in distributed systems is

much like paging in memory systems. IPC can be increased to

the point where thrashing takes place. The system becomes

saturated by overhead, and performance is degraded. Chu

suggests an integer programming approach to the problem of

task allocation as a means of minimizing IPC and maximizing

system performance. Chu's objective function (Chu and

Holloway, 1980, p. 57) for minimizing IPC cost, in the

general case, is as follows:
Cost(X) = 1k iqikXik + Z[<kI j<i(vvijdiXikxjl).

Subject to:

Tsixik ! Rk, k=l,...n memory constraint, and

Y uixik : Tk, k=l,...n real-time constraint.
Where:

q = processing cost

x = assignment of ESi to node k, 0 or 1

w = normalization factor

v = volume of communication

d = distance between nodes. (Chu and Holloway,

1980, p. 62)

As task allocation minimizes IPC in conventional

distributed systems, the allocation of expert systems to

nodes and the allocation of problems to expert systems

minimizes IPC in the specific case of distributed expert

systems. An integer programming technique similar to the one

presented by Chu can be used to solve the expert system

allocation problem. Processing costs and communication c.sts

are calculated for every expert system at every node.

Assignment of expert systems to nodes is based on minimizing

33,1

o



the objective function, and therefore, maximizing

perfor- =e. The system cost function for expert

systeir :s comprised of two cost components, processing cost

and communication cost. One of the major tasks of using the

integer programming model is the evaluation of the system

processing costs. Studies of literature concerning task

allocation in a distributed environment have suggested the

following list of variables pertinent to system cost:

N - execution frequency of a module

AET = accumulative execution time

ri = number of expert system rules

Si = I/O and level of coupling among rules
MIL = machine language instructions (Chu and Lan,

1984, p. 692)

tp(A) = processor turnaround time

t(A) = task turnaround time (Shen and Tsai, 1985, p.

198)

tk = power of processor at the node

Other considerations:

Growth potential

Memory

The values of ri and si can be found by using the A*

algorithm, which employs a cost function and an evaluation

function, as described later in this chapter. N is captured

in si through the cost function, and therefore becomes

statistically insignificant and can be dropped. AET, tp(A),

and t(A) are inversely proportional to tk. AET is expressed

in machine language instructions, MIL. Machine instructions

vary from processor to processor. Measuring MIL across

heterogeneous processors could require a significant

normalization effort. Measuring execution cost with respect

to the expert system rather than a specific processor's

instruction set provides a uniform measurement, and MIL is ri
/ tk. Considerations such as growth and memory are determined

by the power of the processor at the node, tk. rocessing

34

.~ ..



cost is the execution time of an expert system on a

processor. Execution time is a function of the number of

rules fired to solve a given problem by an expert system, the

level of coupling among the rules, the amount of I/O

required, and the power of the CPU at the node. The following

formula for processing cost was derived as part of this

study:

qik = f(ri, si' tk)

Combining the cost function and the evaluation function

with respect to the power of the processor yields the cost of

execution, qik"

The cost of processing an expert system is directly

proportional to the number of rules in that expert system.

Any expert system will eventually test all its rules, even if

the level of coupling among the rules is zero. Certain

queries will find an immediate match, while others will be

matched by the latter rules. On the average fifty per cent of

the rules in a system will be fired. The cost of executing a

system is driven up by the total number of rules, ri .

qik co ri M

The level of coupling is a factor which weights the

rules. Rules that are highly coupled, that is, one rule fires .,

one or more successive rules, are more costly to execute.

Rules which perform I/O functions utilize more system

resources than those that do not. The number of rules is

weighted by the level of coupling and amount of I/O, and

therefore, ri is multiplied by si . System cost is directly

proportional to si .

qik si and qik oo risi
The relationship between execution cost and the

processing power is straight forward. As the power of the CPU

increases, ceteras paribus, the time of system execution

decreases. System cost is inversely proportional to tk.

qik 1 / tk

I
35



If expert system (i) is located on node (k), then the

processing cost, qa' of running problem (a) on expert system

(i) located on processor (k) is qik"
= ri si / tk

ri = number of rules in ES i

S= I/O overhead and level of coupling among

rules in ESi

tk = power of CPU at node k

For the general case, the total system processing cost

for any expert system located on any node is captured in the

formula:

Processing cost = Ikli(qikXik )

where, q is the cost of processing expert system (i) )n

processor (k), for all i and k, and from the assignment

matrix, x = 1 if expert system (i) is on processor (k) and 0

if it is not.

The number of rules fired and the level of coupling among

the rules depends on the control structure of the expert

system. Expert systems may use any of a number of control

structures for search; depth-first, breadth-first,

optimization, best first, branch-and-bound, or A* search.

Depending on the type of problem and the control structure

used, one can determine the state of search of a problem

using tools such as evaluation functions or cost functions.

When designing an expert system, these functions help to

clarify which search structure is best for a given problem by

identifying the number of states, levels of logic, which must

be transversed in order to reach a goal state. An evaluation

function can numerically represent the distance from the

goal, at any state in the search.

The concept of measuring distance from the goal by number

of states is also useful in determining processing cost. Each

state transversed to reach the goal requires an additional .

number of rules fired. Different search structures will fire

a different number of rules for a problem, but regardless of

36 .

®r,,

.5.

'S



the type of search, the distance from the goal can be

measured. By using an evaluation function one can determine

the number of states required to solve a problem by an expert

system.

To find ri and si, each state must be evaluated in terms

of the number of rules fired, the level of coupling of the

rules, and I/O overhead. Optimal path searches, of which

there are two, are best suited to state evaluation in terms

of processing costs. The branch-and-bound search employs an

evaluation function, and, as do all evaluation functions, it

measures cost in terms of distance to the goal. This

"strategy may jump around among states ... but it has a nice

property: the first path to the goal is guaranteed to be the

lowest-cost path to the goal" (Rowe, Ch. 9 p. 9). Evaluation

functions, however, account only for distance in terms of

states. With respect to expert systems, they do not account

for the number of rules fired in a given state or the cost of

executing operators within that state. Operators which

require I/O have a higher system cost associated with them

due to the difference in speed of CPU processing versus

database access and calls to the operating system. The I/O

operators can be converted to standard work units for system

design and tuning purposes, as will be discussed later.

The A* (A star) search employees both an evaluation

function, to account for search distance, and a cost function

to assign values to the states based on the cost of the

operators within the states.

Combining the values of the evaluation and cost functions

provides a method of measuring ri and si . Both functions

should use the same unit of measure. The processing cost

function measures the execution time of equivalent

instructions on a processor in terms of rules fired and I/O

0 requirements. Therefore, if the evaluation gives the distance

to the goal, the number of states to the goal, and the cost

function assigns a value to each state, based on rules fired

37



| I

and I/O overhead the combination of the two yields the lowest

cost of processing a given problem on a node.

A specific example of how this is done can be

demonstrated using the prototype distributed expert system. 6

The processing cost for expert system CRIME 1 to solve

problem (a) is calculated as follows:

qik - ri si / tk

Using A* search to trace ri and si through each state

within an expert system is a variation of the state-space

search method, applied specifically to expert system

allocation. The purpose of this application of state-space

search is not to find the optimal weak homomorphism (Shen and D

Tsai, 1985, p. 200) but to measure the processing cost

qik of a possible system allocation or that of an existing

system. There are significant system design implications for

the A* algorithm which will be discussed in the concluding

chapter.

State-space search allows one to find the cost of the

path to the goal for a single problem. Applying the integer

programming method to the result of the A* algorithm sums the

processing costs of all problems that can be executed by all

expert systems at a given node to determine the system

processing cost for that node. The system objective function

can now optimize processing cost for all problems over all

nodes. It is now possible to allocate systems to nodes based

on minimizing processing cost, however, an optimum allocation

strategy must also consider communication costs.

Communications costs for the expert are decomposed into

volume and cost per unit. Volume is the amount of

communication required between expert systems, Cij, for

expert systems (i and j). Cost per unit volume, Ckl, is the

cost of communicating between two processors, k and 1.

Volume of communication is not problem dependent when

allocating expert systems to nodes. The primary consideration

is the volume of communication necessary to create the

38

PLO



interface between expert systems regardless of the problem to

be solved. Volume becomes problem dependent at the task

allocation level. That is, how to decide which problem should

be run on which expert system, based on cost verses solution

payback. Volume becomes problem dependent at the system

level only if the system solves a single problem or if task

allocation is static. Both of these situations are

uninteresting from an interactive GDSS point of view and will

not be discussed further. A static allocation problem can be

solved using the dynamic allocation model.

The formula for determining communication cost is

developed by combining volume of communication with cost per

unit volume with respect to the assignment matrix:

Communication cost = Ikll(CijCklxikjl)

Other variables for communication cost suggested by

previous studies:

V = average number of words communicated

M-F = number of updates

L = average number of words per update (Chu and Lan,

1984, p. 692)

V and L are captured by Cij, and M-F is represented in Ckl.

Total system cost is realized by combining processing and

communication costs:

Total system cost = Ik~lqijxij + Fkyl(CijCklXikXjl)]

Optimum allocation can be realized by minimizing total

cost subject to:
real-time constraint:

l(ulxik Tk), k = 1,...,n

where, u = processing time required by ES (i)

T = time constraint for processing ES (i) on node

(k) and,

memory constraint:
(sixik Rk) k = 1,...,n

where, s = memory required by ES(i)

r = maximum memory in node k.

39

p



The expert system allocation formula is similar to the

general format for distributed systems derived by Chu (1980):

Cost(X) = Ekiqik + Xik+ li<kTj<l(WVijdikXikXjl)].

For the model system implemented on the LAN, distance (d) is

considered constant and insignificant to communication cost

and will be ignored. As well, the normalization factor (w) is

unnecessary, as units of measure are consistent throughout

the model.

To look at a specific problem on the model, suppose the

problem is problem "a". There is some probability associated

with each expert system in the model which is the likelihood

that the system will be called to solve problem a. There is

likewise some probability associated with each expert system

for every problem solvable by the distributed expert system

model. The probability that a system is called to solve a

problem can be applied to the processing costs and

communication costs of executing that problem on the

individual expert system. Summing the costs of every expert

system called to solve the problem solution yields the cost

of solving that individual problem on the distributed system.

Summing the costs of all the individual problems on the

system determines the total system cost.

Cost = Eki[qikXik+ Yk'(CijCklxikxjl)]

The distributed expert system model has four expert

systems; META, CRIME_1, CREDIT_1, and CREDIT_2, to be

referred to in the equation as ESi, ES2, ES3, and ES4

respectively. The probability that expert system 1 is called

is PESI" the probability that problem a is executed is Pa" As

discussed in the previous chapter, all nodes communicate via

the blackboard, which will be represented as node 5. During

each call, a node both writes to and reads from the

blackboard. Therefore, communication costs between nodes 1

and 2 via node 5 is 2C1 5 +2C2 5.

40



The problem of optimizing the allocation of problems on

the system can be solved by the following equation:

Cost = PES1 (Paqj+ P1bqj+ Pcg1 ) +

PES2 (Pa(q2+2C, 5 + 2C2 5) + Pb(q2 +
2C,5 +

2 C25 ) +

PC(q 2 + 2C1 5 + 2C2 5 )] +

PES3{PaEq3 + 2C,5+ 2C35 + PES4(q4+ 2C3 5 + 2C4 5 )] +

Pb(q3+ 2C,5+ 2C354- PES4(q4+ 2C35 + 2C4 5 )] +

PC[q 3 + 2C 1 5+ 2C35 + P ES4 (q4+ 2C35 + 2C 4 5 )11

The problem of optimizing the allocation of expert

systems to nodes is more complicated when considering the

processing and communication costs for the entire set of

problems to be solved by the expert systems. The above

equation must now be solved for each expert system on each

node, and the equation is expanded as follows:

Cost = I~alll Pbq11 x1 + P~qjlxl+ Paql~x2+ Pbql2x2 +

Pcql2 x2 + Paql3x3 + P bql3 x3 + Pcql3 x3 + P aql4 x4 +

Pbql4x4 + Pcql4 x4 ) +

PE2p~~x q22 x2 + q2 3 x2+ q2 4x2 + 2C15 + 2C2 5 )+

Pb(q 2 lx2 + q22 x2+ q2 3 X2+ q2 4x2 + 2C15 + 2C2 5 )+

PC(q2 1 x2 + q22 '2+ q2 3 x2 + q2 4 x2+ 2C1 5+ 2C25 )+

PES3{Pa(q3lx3 + q32 x3 + q3 3 x3+ q3 4x3 + 2C15 + 2C3 5 +

PES 4 (q4 lx4 + q4 2 x4 + q4 3 x4 + q44x4+ 2C3 5
2C4 5 )1+ Pb(q3 lx3+ q3 2 x3+ q3 3x3 + q34 x3 +

2C1 5 + 2C35 + P ES4 (q4 lx4 + q42 x4 + q4 3x4 +

q4 4 x4 + 2C35 + 2C4 5 )1+ Pc[q3 lx3 + q3 2 x3 +

q 3 3x3 + q3 4x3 + 2C1 5+ 2C35 +

PES4 (q4lx4 + q4 2x4 + q43 x4 + q4 4 x4+ 2C3 5+

2C4 5)]1

Assume ES 1 is located on node 1, ES 2 on node 2, ES 3 on

node 3, and ES 4 on node 4 with node 5 as the blackboard.

Problem "all will be solved, and all expert systems are called

to reach a solution.

Cost q11 + (q2 2 + 2C1 5 + 2C2 5) + [q3 3 + 2C1 5 + 2C35 +

(q44 + 2C3 5 +2C4 5 ))

41

dll-Jv. -IIII'1



For problem (a) on qjl there are 83 rules. These rules

perform I/O functions or are coupled to other rules 51

times. The power of the 8086 processor on the IBM PC LAN is

4.77MHz.

qll= ri si / tk

= 83 x 51 / 4.77 - 4233 / 4.77 = 887.42
+ p

q2 2  40 x 26 / 4.77 = 1040 / 4.77 = 218.03
+

2C 1 5 - 2 (CijCkl) S

= 2(2 x 2) = 8

2C 2 5 - 2(1 x 2) = 4

+ S

q3 3 = 80 x 46 / 4.77 - 3680 / 4.77 - 771.49
+

2C 3 5 - 2(1 x 1) = 2

+ S

q 40 x 26 / 4.77 = 1040 / 4.77 - 218.03

+ ,

2C 4 5 = 2(1 x 1) - 2

Cost - 887.42 + 218.03 + 8 + 4 + 771.49 + 2 + 218.03 + 2

= 2110.97

For this example the level of coupling was determined by

the number of times a rule fires additional rules or invokes

an I/O function. The module "getcredit_1" has a coupling

value of 6.

get_creditl:-

* directory('c:\credit_l.rep',_, _,T,D,_),

# base time c,

# basedate c, -

42 '

2A

- , .' ' ."#''%, "" 'i 9 ' , , ..-. - , . •" " • • --



II
# new-time-c(T),

# new date c(D),

asserta(base_d_c(D)),

asserta(base t_c(T)),
shell('copy c: creditl.rep'),

open (H, 'credit l .rep, r),

readval(H),

close(H).

There are two calls to the operating system (*) and four

additional rules fired (#) . It is assumed that vertical

communications cost twice as much as peer-to-peer

communications and that META is sending twice the message

volume as the other systems.

The resultant value is a magnitude. It can applied across

heterogeneous processors, with regard to the value of q, and

to dissimilar networks, with regard to C. The value of q

may be converted to equivalent instructions on a specific

machine and the time of execution on that machine. C

represents the number of messages sent and the value of the

data. The end result can be measured in terms of the

standard work unit (SWU). In terms of the interactive

environment, the SWU is the single most important concept.

Applications built within parameters of the standard work

unit minimize critical resources used for execution and

uniformly apply the discipline of controlling resource

consumption across all applications within the system.

(Inmon, 1983, p. 75)

A magnitude expressed in terms of performance

constraints, such as the SWU, provides an optimal means of

allocating expert systems. A threshold number of rules or

processor speed is not necessary, as the number of rules,

level of coupling among rules, and power of the processor are

contained in the objective function.

Through the use of distributed expert systems, it is

possible to solve problems previously thought to be too broad

43



for expert system application. A large knowledge domain may

be partitioned into distinct areas of expertise which are

incorporated into separate expert systems. Overall problem

management is performed by the meta expert system. The system

allocation function can be applied to any specific

configuration to determine to determine where these expert

systems should reside. If the problem can be solved by more

than one expert system, or if it may be necessary to solve

only part of a problem, the task allocation function can

determine which expert system should be called. Integer

programming allows rne to determine the optimal use of the

distributed system. Programming the selection criteria into

the meta system automates the optimization process of task

allocation.

4'
SW

- | - -_------* - - -



- -#v
,  

- . 7-V7t r7UW

L

V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

A. CONCLUSIONS

This thesis has shown that implementation of distributed

expert systems is possible on a Local Area Network. By

distributing expertise within group expert systems, it is

feasible to solve large problems using artificial

intelligence applications on PC's.

If the problem domain is one that is factorable, then

independent expert systems can solve portions of the problem.

The domain must be factored into discrete areas of expertise

which can be distributed across the nodes of a network.

Solutions from these expert systems can be synthesized by a

single system to solve the meta problem.

The general architecture for group expert systems

consists of a communication structure, a meta expert system,

and consultant expert systems. The communication mechanism

should be independent of the specific function of the expert

systems in the group. It is merely a vehicle to invoke

consultant expert systems, pass problem information and

solutions, and perform I/O functions. Vertical communications

between the meta and consultant systems and horizontal peer-

to-peer communications between consultant systems must be

supported.

The meta expert system manages the problem solution. It

identifies, validates, and decomposes the problem. The meta

system determines problem-domain and domain-domain
I

relationships and devolves the problem to the appropriate

expert systems. When given a choice of consultant expert

systems within the same domain, it selects a system based on

a cost verses problem pay-back criteria. Inputs from

consultant expert systems are then synthesized into a problem

solution by the meta system.

The consultant expert systems read and validate the

problem input. These expert systems may consult with each

45



other on a peer-to-peer basis during the formulation of a

problem solution within its own domain. They then communicate

vertically their individual solutions to the meta system.

This general architecture supports the solution of any

problem for which the knowledge domain is factorable. The

architecture is not affected by the specific nature of the

problem.

The optimal location for an expert system on the network

can be determined by minimizing system cost. System cost has

two significant components, processing cost and communication

cost. Communication cost is straight-forward. It is a factor

of the volume of communication, Cij, multiplied by the cost

per unit of volume, Ckl.

Processing cost, qik' for expert systems was found to be

a function of the number of rules in an expert system, ri,

the level of coupling among the rules, si, and the power of

the CPU at the node, tk. The relationship is the formula:
qik w ri si I tk

Using integer programming, minimum total system cost can

be obtained by minimizing the following objective function:

Cost - kl:,(lqijxij+EkZl(CijCklXikXjl)]

The end result is a magnitude which can be applied to expert

systems across heterogeneous processors. Optimum distribution

is important to both system design and tuning.

2. FUTURE RESEARCH

The group expert system developed in this thesis is a

pioneering model used to prove the possibility of

implementing group expert systems on a PC LAN, to demonstrate

a method of system allocation, and to propose an architecture

for group expert systems. This unique prototype is limited by

the purposes for which it was created and the environment in

which it was implemented.

Expansion of the model itself offers several directions

for future research. To make the GESP system practical it

46



should be implemented on a distributed operating system. The %

advent of multitasking microcomputer operating systems, such

as OS/2, will allow calling procedures for consultant expert

systems to be efficient. The processor need not be dedicated

to a polling procedure to receive information, and the use of

a blackboard can be eliminated.

In a distributed environment the communication

architecture can be totally generic. There will be no need to

communicate by sending problem-specific files. The goal is to

create a communication ES which is completely problem-

independent, achieving the first level of modularity.

Adhering to a modular communication structure will allow

multiple group expert systems to co-exist on the network and

be controlled by a single communication expert system, CES.

The CES will know of all other expert systems in the GES and

of all problems the GES is capable of solving. The generic

CES can be located at any or all nodes in the network. A user

can then enter the GES from any node and solve any problem in

the GES. To make this extension from the GESP system one must

a CES separate from the meta ES. It is the meta ES that

achieves the second level of modularity, the factoring of the

problem domain, and synthesizes the problem solution.

The ultimate extension of this study would be the

implementation of a group expert system on a Wide Area

Network. Aside from the obvious differences in communication

requirements, the implications for GES and individual expert

system architecture will need to be studied. Wide Area

Network GES offer tremendous potential support for both the

strategic C3 environment and managerial decision making in

the private sector.

I

47 '

o.

: = -i i i i ' i i ... . . .... . .. . . ..... . ..



APPENDIX

SOURCE CODE FOR GESP

1* META.ARI *
/* database *
base t b(time(O,O,O,O)).

base d b(date(O,Q,O)).

base t c (time(O,0,O0,O0))

base d c (date (0,Q0,O0)).

base t d(time(O,O,O,O)).

base d d(date(Q,Q,O)).

base-t-e(time(O,,,O,)).

base-d-e(date(O,O,O)).

basn t f(time(O,O,O,O)).

base-d-f(date(O,O,O)).

member (P robs, [a, b,c, d, e, f

consult-es(a, [crime_1,credit_1)).

consult-es(b, (crime-lfl.

consult-es(c, [credit-1iD.

consult-es(d, [psych i,credit_3]).

consu'lt-es(e. [crime_1,credit_l,psych 111).

consult-es(f, [credit_3,crime_1,psych 1]).

/* rules *

public main/O.

main: -

prob_read,

prob_features,

prob_soln,

find-soin,

retract(probstmt(P---bStnt)). /*Do this last. ~

48



- - ,. k,. ,. ~ -vI -N ~ - = - .Tor.

prob-read:-

nl,

write ('input problem statement:'),

read(ProbStnt),

asserta(prob_stmt(ProbStmt)).

prob features:-

call (prob -stint (robStint)),

ifthenelse (member (ProbStint,Probs) ,meta-a,exit) .

meinber(X,(Xl _I).
meinber(X,[_ lY]):- iember(X,Y).

ineta a:-

subfeatures (E_Sys),

put k files(E_Sys),

write('kfile written'). o

exit :-

nl,write('Could not interpret').L

put_k-files(E_Sys):-

create (H3, 'k file. inp'),

write(H3,'es('),write(H3,E_Sys),write(H3,') .'),nl(H3),

close (H3),

shell('copy k_file.inp c:').

subfeatures(E_Sys):

__l~ro sttPbStt)

consult es(ProbStmt,E_Sys).

prob-soln:-

call(prob stnt(ProbStnt)),

ifthen(ProbStmt-a, report-a);

ifthen(Prob Stmt-b,report b);

49 A

leib



ifthen(ProbStmt-c,reportC);

ifthen(ProbStmt-d, report -d);

ifthen(ProbStmt-e, report-e);

ifthen(Prob Stmt=f,report-f).

report a: -

get_crime_-1,

get_credit 1.

report-b: -

get_crime_1.

report-c:-

get credit 1.

get psych_1,

get_credit_3.-

reporte: -

get_crime_1,

get_credit_1.

report-f: -

get_crime_1,

get_credit_3,

get-psych 1.

get crime_1:-

directory('c:\crime 1.rep,-, _,T,D, _),

base-time-b,

base-date-b,

new time b(T),

new date b(D),

asserta(base d b(D)),

50 '



asserta(base t b(T)),

shell('copy C: crime 1 .rep'),

open (H,' crime_1. rep', r),

read-val(H),

close (H).

get_credit 1:-

directory('c:\credit 1.rep', _, _,T,D, _),

base-timec, t

base-date-c,

new time c(T),

new-date-c(D),

asserta(base d c(D)),

asserta(base t c(T)),

shell('copy C: credit_1.rep'),

open (H,'credit 1 .rep',r),

read-val(H),

close (H).

get psych 1:-

directory('c:\psych_1.rep', _, _,T,D, _),

base-time-d,

base-date-d,

new-time-d(T),

new-date-d(D),

asserta(base-d-d(D)),

asserta(base t d(T)),

shell('copy C: psych l.rep'),

open (H, 'psych_1. rep', r),

read-val(H),

close (H).

get_credit 2:-
directory ('c: \credit 2 .rep',_,_,T,D,_)

base-time-e,

51



'0. - .-I A..

base-date-e,

new-time-e(T),

new-date-e(D),

asserta(base d e(D)),

asserta(base t e(T)),

shell('copy C: credit -2.rep'),

open(H,'credit_2.rep',r),

read-val (H) ,

close (H).

get credit 3:-

directory('c:\credit-3. rep', _, _,T,D, _),

base-time-f,

base-date-f,

new-time-f(T),

new-date-f (D) ,

asserta(base-d-f(D)),

asserta(base-t-f(T)),

shell('copy c: credit_3.rep'),

open(H,'credit -3.rep' ,r),

read-val(H),

close (H).

base-time-b:- base-t-b(time(W,X,Y,Z)).

base-date b:- base-d-b(date(X,Y,Z)).

base-time c:- base-t-c(time(W,X,Y,Z)).

base-date c:- base-d-c(date(X,Y,Z)).

base-time-d:- base-t-d(time(W,X,Y,Z)).

base date d:- base d d(date(X,Y,Z)).

52



base-time e:- base-t-e(time(W,X,Y,Z)).

base-date e:- base-d-e(date(X,Y,Z)).

base-time-f:- base-t-f(time(W,X,Y,Z)).

base date f:- base-d-f(date(X,Y,Z)).

new-time-b(T):-

base-t-b(BT),

ifthenelse(T=BT,keep_looking_k,set-new-time).

new-date-b(D):-

base-d-b(BD),

ifthenelse(D-BD,keep_looking_k,set-new-date).

new-time-c(T):-

base-t-c(BT),

ifthenelse(T=BT,keep_looking_k,set-new-time).

new-date-c (D)-

base-d-c (BD) ,

* ifthenelse(D-BD,keep_looking_k,set-new-date).

new-time d(T):-

base t d(BT),

* ifthenelse(T-BT,keep_looking_k,set-new time).

new-date-d (D)

base-d-d(BD),

ifthenelse(D-BD,keep_looking_k,set-new-date).

new time e(T):-

base t e(BT),

*ifthenelse(T=BT,keep_looking k,set new time).

53



nwdate-e(D):-

base-d-e (BD),

ifthenelse(D-BD,keep_looking_k,set-new-date).

new-time-f(T):-

base t f(BT),

ifthenelse(T=BT,keep-looking_k,set new time).

new-date-f(D):-

base d f(BD),

ifthenelse(D=BD,keep-looking_k,set-new-date).

set-new-time:- retract(base-t-b(time(W,X,Y,Z))).

set new date:- retract(base_d_b(date(X,Y,Z))).

set-ew-ime: rerac~bas-t-~tie(W,,Y,)))

set-new-dte:- retract(base_t_c(dtme(WX,Y,Z))).

set-new-date:- retract(base_d_c(date(X,Y,Z))).

set new time:- retract(base-t-d(time(W,X,Y,Z))).

set new date:- retract(base d d(date(X,Y,Z))).

set ew ime: rerac~bas t ~tie(W,,Y,)))

set new dte:- retract(base t e.(time(WX,Y,Z))).

read-val(H):-

repeat,-

54



read (H, T),

asserta (T),

recordz(val,T,_)

T=end-of-file.

find-soin:-

add.

add:-

findall (X, score (X) ,L),

L=[L1,L2],

Total is Ll+L2,

write (Total),

ifthen(Total>300,action_1);

ifthen (Ll>160, action_1);

ifthen(L2>180,action 1);

ifthen (Total=(300, action_2);

ifthen(Ll=<l6O,action_2);

ifthen(L2-<180,action 2).

action_1:-

write('Further investigation required.').

action_2:-

write('Subject requires no further investigation.').

keep_looking-k:-

prob_soin.

1* end META.ARI *

55



CRIME_ L.ARI *

/* database

base t (time(0,0,O0,O0))

base-d(date(O,O,O)).

/* rules *

public main/O.
main: -

directory('c:\k file.inp', _, _,T,D,_)

base time,

base-date,

new-time (T) ,

new date(D),

asserta(base-d(D)), .

asserta (base t (T)),

shell('copy c:k-file.inp'),

open(H,'k -file.inp',r),

read-val(H),

close (H),

(find soln,

calc-soln,

report-meta);

keep_looking_k).

base-time:- base-t(time(W,X,Y,Z)).

base date:- base d(date(X,Y,Z)). 3

new-t ime (T)-

base-t(BT),

ifthenelse(T-BT,keep looking_k,set-new time).

new date(D):-

base-d(BD), I

56



ifthenelse(D-BD,keep_looking_k,set-new-date).

set-new time:- retract (base-t(time(W,X,Y,Z))).

set-new-date:- retract(base_d(date(X,Y,Z))).

read-val(H):-

repeat,

read(H,T),

asserta (T),

recordz(val,T, _),
T=end-of-file.

find-soin:-

find-es(E_Sys).

find es(ESys):-

call(es(E_Sys)),

member(crime-l,E_Sys).

calc-soin:- asserta(score(180)).

/* A score of 180 is asserted for demo purposes. *
/* The actual criminal database would be called here. *

member (X,[X I- _) .
member(X,[_IY]):- member(X,Y).

report-meta:-

call (score (X)),

create (H3, 'crime_1. rep'),

write(H3,'score('),write(H3,X),write(H3,') .'),nl(H3),

close(H3), 5

shell('copy crime_1.rep c:'),

keep looking_k.

57



keep looking_k:-

main.

1* End CRIME l.ARI *

I

58

-16b or I



CREDIT-l.ARI *

/* database *

base-t (time (0,0,0,0)).

base-d(date(0,0,0)).

base-t-c(time(0,0,0,0)).

base-d-c(date(0,0,O)).

1* rules *

public main/O.

main: -

directory('c:\k_file.inp', _, _,T,D, _),

base-time,

base-date,

new time(T),
new-date(D),

asserta(base-d(D)),

asserta (base t (T)),

shell('copy c:k_file.inp'),

open(H,'k-file.inp',r),

read-val(H),

close (H),

find-soln,

report-meta);

keep looking_k).

base time:- base-t(time(W,X,Y,Z)) .

base date:- base d(date(X,Y,Z)). .

new-time(T):

base t(BT),

ifthenelse(T-BT,keep_looking_k,set new time).

new-date(D):-

59



base-d(B_D),

ifthenelse(D-BD,keep_looking k,set-new-date).

set new time:- retract(base t(time(W,X,Y,Z))).I

set new date:- retract(base-d(date(X,Y,Z))).

read-val(H):-

repeat,

read(H,T),

asserta (T),

recordz(val,T,_)

T-end-of-file.

find-soin:-

find-es(ESys),

calc-scn.

find_es(E_Sys):-

call (es (ESys)),
member(credit_1,ESys).

member(X,(X( )
member(X,(_ IY]):- member(X,Y).

caic-soin:-

/* do credit caic & insert X for 162.1

asserta(score_1(161)),
call(score_1(161)),

ifthenelse(score_1(161)>160,get-credit_2,put_score_1).

put-score_1:-

1* call(score_1(161),

S=(161),

asserta(score(161)), *

60 ''



report-meta.

get credit_2:-

put k files,

write('kfile written').

get_k_files,

calc-consult.

calc-consult:-

call(score_1(X)),

call (score_2(Y)),

ifthenelse(score_2(Y)>score_1(X),put_score -

2,put-score_1).

putk-files:-

create (H4, 'credit~i. inp'),

write(H4,'es('),write(H4,credit_2),write(H4,').',lH

4),

close(H4),

shell('copy credit 1.inp c:').

get k-files:-

directory('c:\credit 2.rep', _, _,T,D, _),

base-time-c,

base-date-c,

new-time-c(T),

new-date-c(D), J

asserta(base-d c(D)),

asserta (base t c(T)),

shell('copy c: credit 2.rep'),

open (H, 'credit_2. rep', r),

read-val-c(H),

close (H).

base time c:- base t c(time(W,X,Y,Z)).

61 '



base date c:- base d c(date(X,Y,Z)).

new-t ime-C (T)-

base-t-c(BT),

ifthenelse(T-BT,keep_looking_k,set new timec).

new-date-c(D):-

base-d-c(BD), 4

ifthenelse(D'-BD,keep_looking_k,set new datec) . 4%

set new time c:- retract(base t c(time(W,X,Y,Z))).

set new datec:- retract(base d c(datetX,Y,Z))).

read-val-c(H)

repeat,

read(H,T),

asserta (T),

recordz(val,T,_)

T=end of file.

report-meta: -

call (score (X)),

create (H3, 'credit_1. rep'),

write(H3,'score('),write(H3,X),write(H
3 ,') .'),nl(H3),

close (13),

shell('copy credit l.rep c:'),

keep-looking_k.

keep looking k:- 1
main.

/* end CREDIT_1.ARI ~

1*-

62



CREDIT_2.ARI

/* database

base-t(time(O,O,O,O)).

base-d(date(O,O,O)).

1* rules

public main/O.

main: -

directory('c:\credit l.inp',_, _,T,D, _),
base time,

base-date,

new-time(T),

new-date(D),

asserta(base d(D)),

asserta (base t (T)),

shell('copy c:credit_l.inp'),
open(H,'credit_1.inp',r),

read-val(H),

close (H),

(find soln,

caic-soin,

report-meta);

keep looking k).

*base time:- base t(time(W,X,Y,Z)).

base-date:- base-d(date(X,Y,Z)).

new-time(T):-

base t(BT),

ifthenelse(T-BT,keep looking k,set new time).

new date(D):-

base d(BD), 5

63



t .. . S.. S. S * = - S S. S - - . -

ifthenelse(D-BD,keep_looking_k,set-new date).

set-new-time:- retract(base-t(time(W,X,Y,Z))).

set-new-date:- retract(base-d(date(X,Y,Z))).

read-val (H): -

repeat,

read(H,T),

asserta (T),

recordz(val,T,_)

T-end-of-file.

find-soin:-

find-es(E_Sys).

f ind-es (E_Sys):

call (es(E_Sys)),
rember(credit_1,E_Sys).

calc-soln:- asserta(score(160)) -

/* A score of 160 is asserted for demo purposes. *
/* The actual credit database would be called here *

member(X,[XI _I).
member(X,[_ IYI):- member(X,Y).

report meta:-

call (score (X)),

create (H3, 'credit_2. rep'),

write(H3,'score('),write(H3,X),write(H3,').'),nl(H3),

close (H3),

shell('copy credit_2.rep c:'),

ke.- -looking_k.

0; 4



keep_looking_k:-

main.

/* end CREDIT_2.ARI *
A Z

65



CREDIT_3.ARI *

1* database

base-t(time(O,O,O,O)).

base-d (date(0,0,O0))

/* rules

public main/O.

main: -

directory('c:\k-file.inp', _, _,T,D, _),

base-time,

base-date,

new-time(T)

new-date(D),

asserta (base-d(D)),

asserta (base-t (T)),

shell('copy c:k_file.inp'),

open(H,'k file.inp' ,r),

read val(H),

close (H),

(find-soln,

caic-soln,

report-meta);

keep_looking_k).

base-time:- base-t(time(W,X,Y,Z)).

base-date:- base-d(date(X,Y,Z)).

new-time(T):-

base-t(BT),

ifthenelse(T-B-T,keep looking_k,set-new-time).

new-date (D)

base-d(BD),

66



ifthenelse(D=B-D,keep_looking_k,set-new-date).

set-new-time:- retract(base-t(time(W,X,Y,Z))).

set-new-date:- retract(base-d(date(X,Y,Zfl).

read-val(H):-

repeat,

read(H,T),

asserta (T),

recordz(val,T, _),
T-end-of-f ile.

find-soin:-

find-es (ESys).

find-es (ESys):

call (es (ESys)),

member(credit-3,ESys).

caic-soin:- asserta(score(160)).

/* A score of 160 is asserted for demo purposes. *
1* The actual credit database should be called here. *

member(X,[XI _]).
member(X,[_IYI):- member(X,Y).

report-meta:-

call (score WX),

create(H3,'crdeit_3.rep'),

write(H3 ,'score(),write(H3,X)write(H3I)'),nl(H3),

close (H3),

shell('copy credit_3.rep c:'),

keep looking k.

67 %U



keep looking_k:-

main.

End CREDIT_3.ARI

68



PSYCH-l.ARI *

1* database *

base-t (time (0,0,0,O0))

base-d(date(O,O,O)).

/* rules

public main/O.

main: -

directory('Ic:\k_file.inp', _, _,T,D, _),

base-time,

base-date,

new-time (T) ,

new-date (D) ,

asserta(base d(D)),

asserta (base-t (T)),

shell('copy c:k_file.inp'),

open(H,'k -file.inp',r),

read-val(H),

close (H),

(find-soln,

calc-soln,

report-meta);

keep_looking_k).

base time:- base t(time(W,X,Y,Z)).

base-date:- base-d(date(X,Y,Z)).

new-t ime (T)-

base-t(BT),

ifthenelse(T-BT,keep looking_k,set-new-time).

new-date (D)-

base-d(BD),

69

..... .... N 'I? I.



ifthenelse(D-BD,keep_looking_k,set-new-date).

set new time:- retract(base-t(time(W,,X,Y,,Z))).

set new date:- retract(base-d(date(X,Y,Z))).

read-val(H):-

repeat,

read(H,T),

asserta (T),

recordz(val,T,_)

T=end-of-file.

find-soln:-

find-es (ESys).

find-es(E_Sys):- -l
call (es (ESys)),

rember(psych_1,ESys).

calc-soln:- asserta(score(170)). 0

/* A score of 170 is asserted for demo purposes.

/* The actual psychological database should be called here.

member(X,[XI 1).

member(X,(_ IYI):- member(X,Y).

report meta:-

call (score MX)

create (H3, 'psych_1 .rep') ,

write(H3,'score('),write(H3,X),write(H3,').'),nl(H3),

close (H3),

shell('copy psych_1.rep c:'),

70

p



Ar -. . . .l~rLw.V -rw

keep_looking_k.

keep_looking_k:-

main.

End PSYCH 1.ARI *

1~71



REFERENCES

Biegl, C., Foxvog, D., and Kawamura, K., "Distributed Expert
Systems in Prolog," The Eighteenth Southeastern Symposium on
System Theory, IEEE Computer Society Press, 1986.

Chu, W.W., Holloway, L. J., Lan, M., and Efe, K., "Task
Allocation in Distributed Data Processing," Computer, Vol.
13, No. 11, November 1980.

Chu, W.W., Lan, M., and Hellerstein, J., "Estimation of
Intermodule Communication (IMC) and Its Applications in
Distributed Data Processing Systems," IEEE Transactions on
Computers, Vol. C-33, No. 8, August 1984.

Inmon, W. H., Management Control of Data Processig:L
Preventing Management by Crisis, Prentice-Hall, 1983.

Isett, J. B., Must an Effective Decision Support System be an
Expert System?, paper presented at the Graduate School of
Business, University of Texas at Austin, 22 April 1985.

Rowe, N. C., Class Notes for CS3310, Artificial Intelligence,
unpublished manuscript, Naval Postgraduate School, Monterey,
California, 1987.

Shen, C. and Tsai, W., "A Graph Matching Approach to Optimal
Task Assignment in Distributed Computing Systems Using a
Minimax Criterion," IEEE Transactions on Computers, Vol. C-
34, No. 3, March 1985.

Silverman, B. G., "FACILITY ADVISOR: A Distributed Expert
System Testbed for Spacecraft Ground Facilities," Expert
Systems in Government Symposium, IEEE Computer Society Press,
1986.

Waterman, D. A., A Guide to Expert Systems, Addison-Wesley,
1986.

Williamson, M., "Will AI Fit Onto a PC?," Computerworld, 17
August 1987.

72



I = . S - -

SELECTED BIBLIOGRAPHY

Bennett, J. L., Building Decision Support Systems, Addison-
Wesley, 1983.

Benoit, J. R., et al., "ALLIES: An Experiment in Cooperating
Expert Systems for Command and Control", Expert Systems in
Government Symposium, IEEE Computer Society Press, 1986.

Burkholder, L., et al., "Prolog for the People", AI Expert,
Vol. 2, No. 8, June 1987.

Clocksin, W. F., "A Prolog Primer", BYTE, Vol. 12, No. 9,
August 1987.

Clocksin, W. F. and Mellish, C. S., Programming in Prolog,
Springer-Verlag, 1987.

Davis, F. D., "Multiuser Programming", BYTE, Vol. 12, No. 8,
July 1987.

Davis, W. S., Systems Analysis and Design, Addison-Wesley,
1983.

Delahaye, J. P., Formal Methods in Artificial Intelligence,
John Wiley & Sons, Inc., 1987.

Entner, R. S. and Tosh, D. E., "Expert Systems Architecture
for Battle Management", Expert Systems in Government
Symposium, IEEE Computer Society Press, 1986.

Isett, J. B., Decision Support System Design for Crisis
Decision Making: An Experiment in Automated Support for
Crisis Management, Ph. D. Dissertation, University of Texas
at Austin, Austin, Texas, May 1987.

Martin, J., Design and Strategy for Distributed Data
Processing, Prentice-Hall, 1981.

Page-Jones, M., The Practical Guide to Structured Systems
Design, Yourdon, Inc., 1980.

Pressman, R. S., Software Engineering a Practioner's
Approach, McGraw-Hill, Inc., 1982.

Salzberg, S., "Knowledge Representation in the Real World",
AI Expert, Vol. 2, No.8, 1987.

73



Stallings, W. Data and Computer Communications, Macmillan >
Publishing Company, 1985. [

Yourdon, E., Managing Structured Techniques, Yourdon, Inc.,
1986. _

i

I

.

'

-a
.f

°t.

°-

" ° . , " , "* " " ", " " " ° " " " ° % % ° " " - % " " ° " . " %m %. % "- N - , " % " % % " " ° % - - "



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Superintendent 2
Attn: Library, Code 424
Naval Post raduate School
Monterey, California 93943-5002

3. Chief of Naval Operations 1
Director of Information Systems (OP-945)
Navy Department
Washington, D.C. 20350-2000

4. Dr. T. Sivasankaran 3
Department of Administrative Sciences
Code 54-SJ
Naval Postgraduate School
Monterey, California 93943

5. Dr. T. Bui 1
Department of Administrative Sciences
Code 54-BD
Naval Postgraduate School
Monterey, California 93943

6. Dr. Y. Mortae 1
Department o Administrative Sciences
Code 54-MY
Naval Postgraduate School
Monterey, California 93943

7. LT Michael B. Rattigan 5
17133 Creekside Circle
Morgan Hill, California 95037

8. Dr. D. R. Whipple 1
Chairman, Dept. of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943

9. Mr. and Mrs. John P. Rattigan 2
30 Holly Avenue, Apartment 204-H
Shalimar, Florida 32579

10. Mr. and Mrs. Ben Sirmons Jr. 1
510 Wicker Street
Greensgoro, North Carolina 27403

11. Mr. and Mrs. William Ryan 1
378 Bacon Street
Waltham, Massachusetts 02154

12. Mr. and Mrs. Robert Hurstak 1
230 Marlboro Road
Sudbury, Massachusetts 01776

13. Mr. and Mrs. Peter W. Ryan 1
249 Dale Street
Waltham, Massachusetts 02154

75

r~~o or I.rV ~ < ~ V


